INTERPLAY BETWEEN TWO GENERALIZATIONS OF FIRST COUNTABILITY

TARAS BANAKH

We shall discuss the interplay between two generalizations of the well-known

Definition 1. A topological space X is *first-countable* at a point $x \in X$ if there exists a countable neighborhood base $\{U_n\}_{n \in \omega}$ at x.

There are two directions of generalizing the first-countability: (i) to use more general index sets than ω and (ii) to look for countable networks instead of countable neighborhood bases.

The first approach leads to the following

Definition 2. Let (P, \leq) be a directed poset. A neighborhood base \mathcal{B} at a point x of a topological space X is called a P-base at x if it admits a monotone enumeration $\mathcal{B} = \{U_p\}_{p \in P}$ (which means that $U_q \subset U_p$ for every $p \leq q$).

We shall be especially interested in *P*-bases for the set ω^{ω} of all functions from ω to ω , endowed with the natural partial order. In the literature ω^{ω} -bases often are called \mathfrak{G} -bases.

The second approach leads to

Definition 3. Let \mathcal{C} be a family of subsets of a topological space X. A family \mathcal{N} of subsets of X is called a \mathcal{C}^* -network at a point $x \in X$ if for each neighborhood $O_x \subset X$ and each set $C \in \mathcal{C}$ accumulating at x there is a set $N \in \mathcal{N}$ such that $x \in N \subset O_x$ and the intersection $C \cap N$ is infinite.

For each topological space X we are interested in three concrete families:

- sc of all convergent sequences in X;
- s of all countable subsets in X;
- p of all subsets in X.

For any family \mathcal{N} of subsets of a topological space X and any point $x \in X$ we have the implications:

neighborhood base at $x \Rightarrow p^*$ -network at $x \Rightarrow s^*$ -network at $x \Rightarrow cs^*$ -network at x.

Following Tsaban and Zdomskyy, we define a topological space X to have the strong Pytkeev property at a point $x \in X$ if it has a countable p^* -network at x.

The main result of the talk is the following (important) theorem proved in [1, §6.4].

Theorem 1. If a topological space X has a neighborhood ω^{ω} -base at a point $x \in X$, then X has a countable s^* -network at x for the family s of all countable subsets of X. If X is countably tight at x, then X has the strong Pytkeev property at x.

References

[1] T. Banakh, Topological spaces with an ω^{ω} -base, 105 pp. preprint (https://arxiv.org/abs/1607.07978).